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A new way to implement solid obstacles in lattice Boltzmann models is presen- 
ted. The unknown populations at the boundary nodes are derived from the 
locally known populations with the help of a second-order Chapman-Enskog 
expansion and Dirichlet boundary conditions with a given momentum. Steady 
flows near a flat wall, arbitrarily inclined with respect to the lattice links, are 
then obtained with a third-order error. In particular, Couette and Poiseuille 
flows are exactly recovered without the Knudsen layers produced for inclined 
walls by the bounce back condition. 

KEY WORDS:  Lattice Boltzmann equation; boundary conditions; Chapman- 
Enskog expansion: Knudsen layer. 

1. I N T R O D U C T I O N  

Lattice-gas ~ and lattice Boltzmann models ~2' 31 have been introduced dur- 
ing the past 10 years as alternative ways to simulate fluid flows. They are 
respectively simplified molecular-dynamics or Boltzmann equations, restric- 
ted to regular lattices and limited sets of velocities. Further information 
about theory and applications of these models can be found in two exten- 
sive reviews: ref. 4 for lattice-gas models and ref. 5 for lattice Boltzmann 
models. 

As in molecular-dynamics or Boltzmann equations, the macroscopic 
fields (pressure, velocity,...) are not handled explicitly in lattice-gas or 
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lattice Boltzmann models, but are computed a posteriori from the local 
particle populations. Consequently, boundary conditions are implemented 
implicitly by supplying the unknown populations coming from outside the 
fluid; i.e., each boundary condition, such as solid walls, inlet, outlets,..., 
requires the knowledge of an appropriate closure relation for these 
unknown populations. 

The most commonly used condition to implement solid walls is the so- 
called bounceback rule, where the populations leaving the fluid return to 
the node of departure with the opposite velocity. This rule is not only very 
simple, but also enforces mass conservation in the computational domain. 
Indeed, this implicit annihilation of the velocity raises the question of the 
exact location of the no-slip walls. This problem becomes especially impor- 
tant for effective simulations of flows when the distance between walls can 
be of the order of a few lattice units and hence accurate location of solid 
walls with respect to the lattice is crucial. Examples of such flows can be 
found in porous media (6-9) or due to the motion of Solid particles in 
Suspension.(~~ 

When the bounceback rule is applied, linear analysis "a) of stationary 
flows invariant by translation along the wall locates no-slip walls exactly 
halfway between the boundary fluid nodes and the next ones inside the 
solid. Since this analysis is based on a first-order Chapman-Enskog expan- 
sion, it gives an exact location of no-slip walls for linear flows only. 
A second-order analysis of this problem "5-~7) has shown that the actual posi- 
tion of the no-slip walls depends also on the size of computational domain, 
the kinematic viscosity, and one of the eigenvalues of the collision matrix 
unrelated to any physical parameter of the simulated flow. For Poiseuille 
flows parallel to one of the population velocities, this second-order analysis 
specifies exactly the distance between no-slip walls and boundary nodes, 
either with the bounceback rule for some eigenvalues of the collision 
matrix (~5. 16) or for some mixing of bounceback and specular reflections. (17) 

Unlike the above methods in which the unknown incoming popula- 
tions are computed from the known outgoing ones, some authors have 
proposed alternative methods in which these unknown populations are 
directly computed from Dirichlet boundary conditions (known velocities 
on the solid wall). In the approaches proposed by Ziegler (~s) and Noble et 
al. (19) for walls parallel to a link of the FHP lattice, the boundary condi- 
tions enforce prescribed velocities on the boundary nodes. It turns out that 
Ziegler's method is a special case of a mixture of bounceback and specular 
reflections, for which the first-order Chapman-Enskog expansion locates 
the wall on the boundary nodes. However, this method has the same 
limitation as the bounceback rule: the position of the solid wall is exact for 
Couette flows only. The second method provides second-order accuracy 
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but seems difficult to extend when the wall is no longer located on nodes 
(inclined walls) or when the number of unknown populations is larger than 
the number of velocity components. 

Skordos (z~ and Ginzbourg c ~7) have proposed more general methods in 
which the unknown populations are computed from first-order ~2~ or second- 
order (17) Chapman-Enskog expansions, the derivatives being approximated 
by a finite-difference scheme. In Skordos' method the pressure (or the den- 
sity) is assumed to be known at the solid. In Ginzbourg's method the density 
is kept unknown and the unknown populations are obtained as solutions of 
a linear system derived from the second-order Chapman-Enskog expansion. 
Since finite-difference approximations of derivatives are used in these 
methods, they require access to the populations of the neighboring lattice 
nodes, and thus they are in general nonlocal. The introduction of finite dif- 
ferences into lattice Boltzmann models also makes these methods noticeably 
less stable. 

Moreover, Knudsen-type layers appear near the walls when they are 
inkclined with respect to lattice links and bounceback or a combination of 
bounceback and specular reflections are used, as shown in this paper. This 
problem seems difficult to solve on regular lattices when finite difference 
approximations are used, since they assume that Dirichlet conditions are 
imposed on some set of points obtained from the discretization of the 
inclined solid wall rather than on the real wall itself. 

In this paper we introduce a new boundary approach, referred as the 
local second-order boundary (LSOB) method, which does not use finite dif- 
ferences, but computes locally at each boundary node all the derivatives 
necessary for the second-order expansion of the unknown populations from 
the known ones. The main idea of this method is to split the hydrodynamic 
fields-momentum, its first- and second-order derivatives, and density-into 
two sets: the known fields given by the boundary conditions and the 
unknown fields. The linear system relating these unknown fields to the 
known populations is then written at each boundary node using two kinds 
of known populations: those arriving from neighboring liquid nodes and 
those which should leave it and propagate into the solid. It follows that the 
number of known populations is equal to the number of velocities defining 
the lattice Boltzmann model. We will show that this number is always 
larger than the number of unknown hydrodynamic fields, at least for 
Dirichlet conditions. At this stage the difficulty is to show that the problem 
is numerically well posed, i.e., that a subset of linear equations can be 
extracted in order to obtain an invertible linear system. Assuming this criti- 
cal step successfully solved, the unknown boundary populations arriving 
from the solid are then obtained as linear combinations of a subset of the 
known populations at this node. The coefficients of these combinations 
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depend upon the inclination of the solid wall, its velocity, the distance 
between the wall and the boundary node, and the eigenvalues of the colli- 
sion matrix. For a fixed wall with a general Dirichlet condition, these coef- 
ficients are computed only once at each boundary node during the 
initialization procedure and they are then used during the usual iteration 
steps. 

With the LSOB method Dirichlet conditions on arbitrary smooth 
walls, such as planes, spheres, cylinders ..... can be introduced into steady 
3D flows with a third-order error. In particular, Couette and Poiseuille 
flows can be simulated exactly for any inclined channels of an arbitrary 
small width. Thus, the method solves with a third-order error both 
problems: location of no-slip walls and appearance of nonhydrodynamic 
solutions. In principle, this method can be extended to walls moving with 
a velocity very small compared to the particle velocities. In this case the 
closure systems at the boundary nodes have to be recomputed each time 
the wall is moved, with potential difficulties when the wall crosses the 
lattice nodes. 

Thus, the paper is organized as follows. Section 2 is devoted to a 
general exposition of the method within the following framework: the 3D 
flow is assumed to be stationary and the fluid domain is bounded by an 
infinite flat solid wall, arbitrarily inclined with respect to the lattice axes, 
with given Dirichlet conditions. Although the method applies to lattice 
Boltzmann models on triangular FHP and facecentered hypercubic 
(FCHC) lattices, the symbolic derivation will be given for the FCHC 
model only. For simplicity the technical details are worked out only for a 
fiat wall kept parallel to one axis of the lattice and are given in section 3. 
The extension of the results to more general cases, such as smooth surfaces, 
is almost straightforwardy but requires cumbersome formulas which can- 
not be easily given within the scope of this paper. 

These results are applied to some particular flows in section 3 and in 
Appendix A. The numerical results are compared to those obtained by the 
bounceback rule. They show that the new method gives the exact solutions 
and removes the nonhydrodynamic modes produced by the bounceback 
condition when the velocity field can be written as a second-order polyno- 
mial in space coordinates. 

Two difficult questions raised by this new method are briefly studied 
in Appendices A and B. In Appendix A we show that the total mass is 
automatically conserved by LSOB methods when stationary Couette or 
Poiseuille flows are simulated in inclined channels. The derivation is only 
given for a simplified discretization of the wall. The linear stability analysis 
of the lattice Boltzmann method with the new boundary conditions is given 
in Appendix B for a very simple geometry. 
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2. GENERAL F R A M E W O R K  OF THE LOCAL SECOND-ORDER 
BOUNDARY METHOD 

2.1. Lattice Boltzmann Equation and Second-Order 
Chapman-Enskog Expansion 

In this paper, we will consider the standard lattice Boltzmann equa- 
tion 12"31 in which the nonlinear terms in the equilibrium distribution are 
neglected [see relation (6)]. For the lattice nodes r surrounded by the 
liquid fraction of the medium, the lattice Boltzmann equation with an 
external force F is given by 

bm 

NAr + C,, t + 1) = N~(r, t) + ~ ~:~0Nj(r, t) + d'p(r, t) F .  C,, 
j ~ l  

i E { 1,..., b,,,} 
(1) 

where N~ is the population moving with velocity C~, ~ is the collision 
matrix, and d' is a model-dependent parameter given in relation (10). 

Density p and momentum j are defined in the standard way 

bm 

p(r, t )=  ~" Ni(r,  t) (2) 
i = l  

bm 

j(r, t) = Y' Ni(r, t) Ci (3) 
i = l  

Their conservation is imposed on the collision matrix d by 

d "  1 = .q ' .  C~=0, V ~ { 1  ..... D} (4) 

where D is the dimension of the physical space, 1 is the b,,,-vector { 1 ..... 1 }, 
and the vector C~ is built from the components of the b,, population 
velocities in direction cc The collision matrix is fully defined by the choice 
of its nonzero eigenvalues and the corresponding eigenvectors. These eigen- 
vectors are given for FHP models in ref. 14 (see also Appendix B) and for 
FCHC models in refs. 17 and 21. The relation between the eigenvalues and 
the coefficients of the usual collision matrix can be found in ref. 22. Note 
that the term N j - N ~  q is replaced by Nj in the collision operator Z ~jNj  
since the nonlinear terms in the equilibrium distribution N~ q are neglected. 

When the ratio e between the lattice unit and a characteristic length of 
the medium is smaller than one, the second-order Chapman-Enskog 
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expansion gives the following approximation for any solution of the lattice 
Boltzmann equation (1): 

N~(r, t )=N~eq~(r, t )+N~(r, t )+O(e3),  ie  { I,..., b,,} (5) 

where NI eq~ is a function of the local conserved quantities, NI tl is O(e), and 
thus a function of the first derivatives of these quantities, and NI '-~ is O(e"), 
and thus a function of their second derivatives. The first two terms in the 
right hand side of (5) are isotropic for the FHP and FCHC lattices and 
have the same expression for any Cartesian coordinate system. This is no 
longer true for the second-order term N~ 2~ which is anisotropic. In the 
sequel, the Cartesian coordinate system {x, y} or {x, y, z} is chosen along 
"lattice axes," i.e., such that one velocity is written (1, 0) for FHP models 
and three velocities are written (1, 0, 0), (0, 1, 0), and (0, 0, 1) for the 3D 
projection of FCHC models. 

Such second-order Chapman-Enskog expansions can be found in 
ref. 23 for the FHP model and steady flows, and in ref. 16 for FCHC 
models with rest populations and time-dependent flows. For steady flows 
and for both FHP and FCHC models without rest populations, the dif- 
ferent orders are given by 

Nl.eq'(r, t) =d(r,  t)+d'j.C,+ O(llJ'-II) (6) 

t )= d' V 

[,. 0,.] { ~2~ -jp 3, FHP 
N; ( r , t ) = d  ' v  Z 0 7 ~ ' ' { - ~ - ~  2, FCHC 2,_ ~ }--~+ T~pp, t =  (8) 

where ~ and fl are taken in {x, y} or {x, y, z}, c 2 is the square of popula- 
tion velocities, the density per cell d is given by 

d(r, t )=  p(r, t) (9) 
b,. 

and the model's parameter d' is given by 

d ' -  D {2, FHP 
c'-b,,' D =  4, FCHC 

( 10) 

The first-order eigenvectors of the collision matrix, associated with the 
eigenvalue 2~,, are 

r 
Q~p = Ci~ Cip - -~ d~,p, Vow, fl ( 11 ) 
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and the second-order eigenvectors of the collision matrix, associated with 
the eigenvalue 22, are 

D + 2  
T i ~ # # = C i ~  , C2 C;~ C~p, V~ :/: f l  (12) 

Hereafter, the FCHC lattice is assumed; the implementation of the new 
boundary technique for the FHP lattice can be derived in a similar way (an 
example can be found in Appendix B). 

2.2. Generalized Boundary Conditions 

When there are no solid walls, all populations are defined by the lat- 
tice Boltzmann equation (1). When solid walls are introduced, boundary 
nodes Zo appear, for which the populations can be divided in two nonempty 
subsets: known local populations N'i ~ which arrive from the neighboring 
fluid nodes, and unknown incoming populations Nii" which should arrive 
from the "solid" node Zo-Ci  (see Fig. 1). Let loc I,. (z0) and / i i n ( z 0 )  be the 

I -  I I I - I - -  - -  - - I - -  - - -  

I I I I I I 

I I I I I I 

I -  - - 1- - - "1" - - -  - I -  - -  - - I - -  - - I -  - - -  

I I I I 1%J m "  I t 
/ 

I i I I I ~  I I 
- - ~  " + - - ~ - I - - I - i ~ - I - - - -  

I I Zo l  i N  " i 

Z '  

F i g .  1. x - z  s e c t i o n  o f  t h e  F C H C  l a t t i c e  f o r  a s o l i d  w a l l  p a r a l l e l  t o  t h e  y ax i s .  
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subsets of indices i for the populations It;~162 and in I~ (Z0), respectively, 
with 

/Ioc+= i tz0) t. .)/in(z0) = { 1 ..... b,,,} 
(13) 

I'i~ u Iin(Zo) = { ~ }  

Let L l~ be the number of local populations NI+ ~ and L iu the number of 
in unknown populations Ni; n in the node zo(Ll~ = b.,). 

In addition, to each unknown population Nin(z0), there corresponds a 
known o n e  NOUt(zo) leaving the lattice with an opposite velocity: 

C j =  - C i ,  i E / in ( z0 ) ,  j E  I~ (14) 

Note that N~ defined for i~I~ is the postcollision population 
given by the right-hand term of (1), while N~~ is the post-propagation 
population. Let L ~ be the number of leaving populations N ~ in the node 
z0(L ~ = L in and L I~ + L ~ = bm). 

The goal of a generalized boundary condition is to compute the L in 
unknown populations Nii ~, in the node Zo in such a way that some given 
conditions, for instance, a given value jso~ of the momentum, would be 
imposed on a given boundary surface with a third-order error O(e3). 
A systematic way to achieve this goal is to compute all the unknown 
quantities appearing in the different terms (6)-(8) of the second-order 
Chapman-Enskog expansion (5) as linear functions of the b,,, known 
populations NI ~162 and N ~ fulfilling all the boundary constraints with the 
prescribed accuracy. If this linear problem can be successfully solved, the 
unknown populations are obtained as linear functions of the known ones: 

Niin(zo) = d(zo) + d'j s~ Ci 

+ Y. Po<Zo){N~~176 
j E lloc 

+ E e, j(Zo){N~Ut(zo)-d(zo)-d'(J~~ 
j E  foul 

i ~ li"(z o) 

(15) 

where the local density is kept unknown and its value must be automati- 
cally supplied by the algorithm along with the matrix P(zo)--(P0.(Zo)). 

The existence of such an algorithm is not obvious a priori for general 
boundary conditions and surfaces. In this paper we exhibit an algorithm 
for a Dirichlet boundary condition on an infinite flat wall parallel to a 
fourfold symmetry axis of the 3D FCHC lattice. Several parts of the deriva- 
tion are kept in their most general form, allowing the results to be extended 
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in a rather straightforward manner to more general orientations of fiat 
walls, to smooth surfaces, or to different boundary conditions, at the 
expense of a slightly more complicated algebra. The extension of the 
method to the difficult problem of surfaces with sharp edges, such as a 
corner between two planes, is left for future work. 

2.3. U n k n o w n  D e r i v a t i v e s  on a Flat  Wa l l  

Inspecting the terms (6)-(8) entering the second-order Chapman- 
Enskog expansion, one sees that they may involve up to twenty five 
unknown quantities the 3 components of the momentum, their 9 first-order 
derivatives, 12 of their 18 second-order derivatives, and the density. This 
number of unknowns is larger than the number of known populations, 18 
for the 3D FCHC lattice, and they cannot be extracted from Nli~ and 
N~ without further information. Indeed this information must be 
sought from the boundary conditions; for instance, Dirichlet boundary 
conditions on a smooth wall provide, everywhere on this wall, not only the 
velocity components, but also all their derivatives along any directions 
tangent to the wall. In order to keep the algebra as simple as possible, in 
this paper the method will be given explicitly for the Dirichlet boundary 
condition with a uniform momentum jso~ on a fiat wall. 

Let {x', y', : '} denote the orthogonal coordinate system associated 
with the flat wall: the _-'-axis is perpendicular to the wall, its positive unit 
vector n being directed outward from the fluid; the x' and y' axes are 
parallel to the wall (see Fig. 1). For any boundary lattice node Zo appear- 

so, be its orthogonal pro- ing from the discretization of the solid wall, let z o 
jection on the wall and ~(Zo) its algebraic distance from Zo: 

,~(Zo) = (Zo so,, - - z  o ) - n  (16) 

With these notations and a uniform momentum on the fiat wall, the 
first- and second-order derivatives of the momentum along x' and y' are 
exactly equal to zero everywhere on the wall, and consequently at the 
points z os~ 

~j~' ~j~' 
(Zo ~ = 7y ,  ( z~~  

Ox' 

02J~ ' ~o, a2J~ ' 02j, 
. . . .  ( Z o )  (Zo) (z o ) ~ol sol 

Ox '2 - Ox'y'  - Oy '2 
= 0 ,  oE= {x ' ,  y ' , z ' }  

(17) 
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A further reduction of the number of unknown derivatives comes from 
the continuity equation for steady flows 

oj:, /oj~., a&', 
Oz--W= - ~ , + ~ y , )  (18) 

and its derivatives along the three axes 
"). ?. 

02j_-, = _  ( O-'jx, + O'jy, "~ 
Oo~' Oz' \Oo~' Ox' Oo~' oyJ '  

ode{x ' ,y ' , z '}  (19) 

Thus only two first-order and six second-order derivatives of the 
momentum are nonzero and unknown on a flat wall with a uniform 
momentum. For the subsequent developmlent, it is convenient to write 
these derivatives times d' as the components of a general unknown vector 
X(zo): 

{oj.,., oj,,, o'-j~., ogx, 02+ o'-j,,, o:j.,., o:Z,,, "~ so, 
X(zo) =d '  \Oz" Oz" Oz '2' Ox' Oz" Oz '2' Oy' "Oz" Oy' Oz" Ox' Oz'} ( z ~  

(20) 

Assuming 6 of the order of a few lattice units, i.e., of order e, the 
momentum and its first- and second-order derivatives on Zo can now be 
obtained from the following Taylor expansions: 

L,(Zo) - .~o, - o SO' --J~, t O  (Z~~ "k- 2 ~2 0"J=' Oz, z(Zo )+O(e3), o(={x ' ,y ' , z ' }  (21) 

oj~. oo'-L., so,, 
(z0) : Oz--; (z~~ + o ~ tz o ~ + O(e3), 

~ ( Z o )  OzJ=' = 6 ~ (z~ ~ + O(~ 3) 

Oz. 
(z~ = ~ ~ (z~~ + 0(~3), 

Oj:, 
0p'  (Zo) = o(~3), {~', ~,} = {x',  y,} 

and 

9 -  

=,={x, ,y ,}  

1~,, ~'} = ix,, y'} 

- -  - - -  ( Z o )  + o ( ~ ' ) ,  ~' = {x ' ,  y '}  &'  Oz' (Zo) &'  Oz' 

the other second-order derivatives being of O(e3). 

(22) 

f l ' =  {x', y', z'} (23) 
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Then the momentum at the boundary node Zo and its first and second 
derivatives can be expressed with a third-order error as linear combinations 
of eight momentum derivatives on the wall. A first strategy, worked out 
explicitly in the next subsections, is to consider the vector X and the local 
cell density d(zo) as the only unknowns of the problem. In Appendix A, 
using Couette and Poiseuille flows as examples, a second strategy is given 
in which the Taylor expansion is used for the momentum only and starts 
from the boundary node Zo; the number of unknown second-order 
derivatives on Zo is kept equal to six using (23) and it can be shown, with 
the help of a symmetry argument, the continuity equation, and relations 
(22), that there are only five unknown quantities entering the first-order 
term of the Chapman-Enskog expansion: 

0j; 0j; 0j;, 0j;, 0j; oj;,  
Oz--' oy" Oz" oy'  .4'3 IZo) (24) 

This second form of the problem requires more known populations to find 
a solution and may be difficult to use in some complex geometry. However, 
in some situations, it gives simpler formulas for which the analytical 
calculations can be pushed farther than with the first approach. 

2.4. S e c o n d - O r d e r  A p p r o x i m a t i o n  near  a Flat  Sol id  W a l l  

Let the C'i be the population velocities expressed in the inclined coor- 
dinate system: C'i= { C~x,, C;),,, C;.,}. Using (19) and (21), we can relate the 
equilibrium solution (6) to X by 

N~eq~=d(zo)+d'jS~ C'i+ �89 X] �9 C'i (25) 

where the [3 x8]  matrices K ~ and K 12) relate respectively the first- and 
second-order derivatives coming into the Taylor approximation (21) of the 
momentum to the vector X: ( 000000 

KIt~= 1 0 0 0 0 0 

0 0 0 0 0 0 

(26) 

and ( 010000 
K 12) = 0 0 0 1 0 0 

0 0 - 1  0 - 1  0 

(27) 
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In order to relate the first-order correction Nli 1) t o  X, all the 
derivatives appearing in (7) can be expressed in terms of the derivatives 

~ol using the Taylor approximations (22). This estimated on the wall at z 0 , 
formal procedure is simplified because the first-order term N~ ~ is invariant 
under any space isometry and has the same form in any orthogonal coor- 
dinate system. Thus NI ~ becomes in the inclined coordinate system 
{x',y';z'} 

where [cs (11)] 

a t ~ J c t  , 

Nt' )(r) = i  ~ ~ , .  , ~-7(r) aia,#, 

9 

Qs~,p, = C~, C;p, - D 8~'/r, 

(28) 

Using then the continuity equation (18), we can write N l.t)(r) in the follow- 
ing vectorial form: 

where 

l 
Nl~)(r) =~-~ E ' " ( r ) .  Q'i 

E II)= d'(E,.,:,, E,-'x', E:,,=,, Ey,y,, E,.,;,,)(r) (31) 

Q', = ( Q,_,.'_-', Q,.,-'.,-' - Qw:', Q;y':,, Qs.,,,y' - Q,_-':', Q,.,-'y') (32) 

and the coefficients E~, a, are given by 

E~,p,(r) = ~ - 7  + ~7s / (r), s 4=fl', {s fl'} ~ {x', y', z'} (33) 

0J~t' r E~,~,(r) = ~7~, ( ) ,  o~'e{x',y',z'} (34) 

Applying the relations (22) and (23) to the coefficients (33) and (34) at the 
boundary nodes, we relate the first-order term Nl~)(Zo) to the vector X by 

NCJ)= z,l i q-  [ G l ' ) ' X ] ' Q i +  [GI2)" X] "Qi (35) 

(30) 

{~',f l '}e{x' ,  y',z'} (29) 
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where the [5 x 8] matrices GItl and G ~21 are given by (i 000000!) 
0 0 0 0 0 0 

G r 1 0 0 0 0 0 (36) 

0 0 0 0 0 0 

0 0 0 0 0 0 

and (i0100001) 
0 0 - - 1  0 0 0 

GI~I= 0 0 0 1 0 0 

0 0 0 0 - 1  0 

0 0 0 0 0 1 

(37) 

By analogy with the first-order correction, the second-order term N~ 2~ 
in (8) can be briefly written as 

Nii2~(r)_ v E,,_) - ~  (r).T~ (38) 

the six-component vectors E ~2~ (r) and Ti being 

E I'-) (r) = d'(E ...... E ........ E, .... E=,,,,, Eyx.,-, Ex,.y)(r) (39) 

Ti=(Ti.,.==, ri=.,.,., T/., .... Ti-,~r, riy.,-.,-, Ti.,-.,,_~.) (40) 

The third-order eigenvectors Ti=pp are defined in (12); for FCHC model, 
the coefficients E~/jp are related to the second-order derivatives by [cf. (8)] 

[0-'J= ' 2 {x, z} (41) 
02j[1 ] 

The term N~ 2~ in (38) is not invariant by an arbitrary space isometry. Con- 
sequently, its form can change when the inclined coordinate system is used 
and we can/aot simply replace {x, y, z} with {x', y', z'} in this term as 
done for the first-order term NI ~) in (28). On the other hand, using (19) 
and (23), we can express the coefficients (41) in terms of the unknown 
second-order derivatives at the solid wall 

v 
E{21(Zo) = ~ IN" X]"  Ti (42) 
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Here, the [6 • 8 ] matrix ~ depends only upon the inclination of the solid 
wall; its two first columns, corresponding to the first-order derivatives in X, 
are identically zero [cf. (27) and (37)]. In Section 3, the matrix ,~ is written 
for a solid wall parallel to a lattice axis. 

Substituting relations (25), (35), and (42) into the Chapman-Enskog 
expansion (5), the second-order approximation of the populations at the 
boundary nodes 

Ni(zo) = d(zo) + d'j s~ Ci + X(z0) "ei(z0) (43) 

where the vector ei(Zo) is given by 

1 . (.),  , 
e i=6K ~II ' .C ' ;+~o-K - "Ci 

1 GI , ) , .  Q , i + ~  G(2) , .  Q'i 

+ v ~ t  ~ �9 T i, i ~ { 1 ..... b . , }  ( 4 4 )  

The superscript t denotes the transpose operator. Thus, eight components 
of the vector X(zo) are to be found at each boundary node in order to con- 
struct the population solution. It is important to repeat here that local den- 
sity d(zo) is also considered to be unknown. 

The populations N~ t) leaving the lattice after collision at time 
t -  1 can be derived from (43) with the help of the lattice Boltzmann equa- 
tion ( 1 ): 

N~ t) = d(zo, t - 1 ) + d'j s~ Ci 

+X(zo, t-1)'e~ t - l ) F . C , ,  ie{l,...,b.,} (45) 

with 

bm 

e ~ ~ ,.~j "ej i6{1  ..... b,,,} (46) 
j = l  

Since the vectors C~,, Q~,p,, and T~pp are the eigenvectors of the collision 
matrix, the derivation of e ~ is straightforward. For stationary solutions, 
we can replace d(zo, t - 1 )  by d(zo, t) and X(z o, t - 1 )  by X(z 0, t) in the 
right-hand side of (45). However, the forcing term in (45) is actually 
calculated at time t -  1 [see (1)] and is hence known. 
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2.5. Second-Order  Solut ion for the U n k n o w n  Populat ions 

2.5.1. Linear Equations for the U n k n o w n  Coeff ic ients.  We 
must now compute X(zo, t) from (43)-(46). This step requires an 
appropriate subset of known populations from the sets { ,,~oc, ~vi ~z0, t)} and 
(or) {I~ o, t)}. Let IU~r be a new set of indices for these chosen pop- 
ulations. Each, j e P~"(z0) has a corresponding index i either in P~ or 
in I~ Let us denote NUS~(Zo, t) the corresponding known contribution 
to (43) or (45) and e~ ~ the corresponding vector ei or e ~ In the first case, 

N~(Zo ,  t) = "" î rl~ t) - d'j s~ Ci (47) 

and in the second one 

Nj~'~(Zo, t'j - . . . . .  ~v, t,tZo, t ) - { d ' j S ~  t - 1 ) F ' C , }  (48) 

Using these notations, we can express Eqs. (43) and (45) in the same 
way: 

e~*(Zo) .X(zo)=N~*(Zo)-d(zo)  , jelU~(Zo) (49) 

It follows that a vector X can be obtained from (49) for any subset of eight 
populations N~ s~ such that the corresponding [ 8 x 8] matrix e us~ is inver- 
tible. In Section 3, we show that there exists at least one subset when the 
wall is parallel to the y axis. In general several subsets giving an invertible 
matrix e us~ can be found, i.e., there exists a family of LSOB closure rela- 
tions. The study of this family and the existence of a possible "best" choice 
among its elements is left for future work. Of course all the acceptable 
LSOB closure relations yield the same Nii n populations for flows such that 
the O(e 3) terms vanish in the Chapman-Enskog expansion. For  general 
flows, a third-order difference is expected between the Nil n populations 
derived from different subsets. 

For  general Dirichlet conditions (nonuniform momentum), some 
derivatives appearing in (17) are nonzero (but known) and the unknown 
derivatives are those entering the vector X defined in (20). Then the linear 
system (49)"is unchanged, but the contributions of the known nonzero 
derivatives to the second-order Chapman-Enskog expansion must be 
included in (47) and (48), as done for the nonzero momentum j~o~. 

Since the linear system (49) is local, each boundary node can be con- 
sidered independently. The method becomes especially transparent for the 
rather artificial case of a known density distribution. Thus, let us consider 
this case first. 
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2.5.2. LSOB Method for Flows with a Known Density 
(Artif icial  Case). When the density in (49) is known and provided 
that det[e ~s~] is different from zero, the solution for X can be immediately 
derived from (49). Substitution of this solution in (43) gives the unknown 
populations Nip in the following form [cf. (15)]: 

Niin(zo)=d{l - ~, Po}+d'jS~ ~.. PoN~ ~, iE/in(z o) (50) 
j e  1 "se .i~ I use 

where the elements of the matrix P(zo) are simply 

P / j=e / ' [ eU~] j  - l ,  i~Iin(zo), j~I~S~(z o) (51) 

Here [eU~]f I denotes the j t h  column of the matrix [e ~ ]  -I. Note that the 
solution (50) becomes density independent if and only if P is a transition 
matrix 

P,j = 1 (52) 
j e  /use 

Note also that the classical reflections--bounceback, specular, or a local 
combination of the two--represent very particular cases of (50) when (52) 
is explicitly introduced. 

2.5.3. LSOB Method for Flows with Unknown Density 
(General Case). Let us now replace the unknown density in (43), (45) 
and in the linear system (49) by its definition [see (2) and (9)] 

d=b,7,1{ y' Ni + y" N i i ~  } (53) 
i e  llC'C(zo) i e  linizo) 

The substitution of (50) with (53) in the sum of relations (43) for popula- 
tions Nip[i~pn(zo)] gives the sohaion for local densiO, with a third-order 
error O(z3): 

d = l  I ( ~ Nli~ + d'j ~~ " ~ Ci+  ~ ~ Pi/. NySe t "~ 
C-~r i ~/l~ Zo) i e lin(z0) i~ m~,ol y~ l"~~ (54) 

=L'~ Z Z s. 
j ~  lUSe~r~) i e  Iin(zo) 

where L I~ is the total number of populations N~; ~ at the node z 0 as defined 
in section 2.2. Thus, the local density is automatically obtained as a linear 
combination of the populations N~; ~ and Ny S+ provided that cJ z is nonzero. 
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When (54) is substituted in (50), the solution for the unknown popula- 
tions becomes the following linear combination of the populations A p~162 
and N~ se: 

c,} 
i e  lin(zo) 

+p~o~ Z NJ Pc+ Z P}Sr ~, iE/in(z0 ) (55) 
j e  lloc j e  I use 

where 

jso ,  } Pi -@z 

the elements of the matrix p,s~ are 

P~'r ~ ~ Pk j ,  ieli"(Zo), jeI"~(Zo) (57) 
k �9  ZO ) 

and the matrix P is introduced in (51). 
The principal result of the relations (55)-(57) is that the unknown 

populations are determined correctly, with a third-order error O(e3), as a 
linear combination of the known populations supplied by the lattice 
Boltzmann equation ( 1 ). The coefficients of this combination are functions 
of the inclination of the solid wall, its velocity, the distance between the 
wall and the boundary node, and the eigenvalues of the collision matrix 
[see (44)]. They depend also upon the local distribution of known and 
unknown populations through the term @z [see (54)]. From considera- 
tions of linear stability in some simplified geometry (see Appendix B), the 
lattice Boltzmann equation (1) with the boundary conditions (55)-(57) is 
expected to be stable at least when the solid wall is located outside the 
lattice (5 ~< 0). 

For each boundary node Zo, we can summarize the LSOB method as 
follows. The distance to the assumed solid wall is computed and the vectors 
e;(z o) are constructed for all the populations at the boundary node Zo, 
using the desired inclination of the solid wall and the chosen eigenvalues )w, 
and 22 [cf. (44)]. Then a subset of populations {N~S~(Zo), jelUS~(Zo)} is 
chosen and the matrix of boundary conditions P"S~ is computed from 
the corresponding matrix eUS'(Zo) [cf. (51), (54), and (57)]. All these steps 
are done only once for each boundary node during the initialization proce- 
dure. Then the unknown populations are computed from the relations 
(55)-(57) for each time step of the iteration procedure. 
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2.6. Conservation of Mass 

It is noteworthy that there is no reason for the sum of the unknown 
populations computed with the LSOB method to be equal to the sum of 
the populations leaving the lattice. Thus, in general, one should expect to 
detect some change in the total mass AM(t), 

AM(t) Z ~ N~ t ) - Z  Z i, .= N i (Zo, t) (58)  
z0 iel~ 1-O i~lin(z0) 

i.e., a nonzero mass flux across the boundaries. 
This possibility that the total mass is not conserved in general flows 

represents the principal difference between explicit methods and classical 
reflections. Although it is tantalizing to enforce the mass conservation in 
the LSOB method using locally the additional constraint AM(t)= 0 at each 
time step t, we show in the next section that local conservation of mass 
leads to non hydrodynamic boundary layers for Couette and Poiseuille 
flows in inclined channels. 

Since the local mass is exactly conserved by the collision operator, the 
total mass in any bounded domain is also exactly conserved for any steady 
flow. It follows that z J M - 0  for any steady flow if the summations in (58) 
are taken for all the boundary nodes of the computational domain. 
However even if the lack of mass disappears for steady flows, it can exist 
when the stationary regime is not yet reached. In addition, the global con- 
servation of mass does not imply that the total mass flux across any side 
of the domain should be exactly zero. For  particular flows, exactly given by 
the second-order Chapman-Enskog expansion and having a zero mass flux 
across some sides of the computational domain, the LSOB method gives a 
zero mass flux across these sides. This is the case for the two walls parallel 
to Couette and Poiseuille flows, as shown analytically in Appendix A. For 
more general steady flows, the best which can be expected from LSOB 
method is A M =  O(•3), since the terms O(e 3) have been neglected. 

Let us first compute AM for a general steady flow near a solid bound- 
ary parallel to the xy plane of the FCHC lattice, without forcing terms 
(F_, =0).  Substituting in (58) the second-order approximations of Nip and 
N ~ given by (43)-(46) yields the following mass flux across the boundary: 

o2j=o,  
 M--12+ z o2 

Hence, when the normal velocity is zero at the wall (j~ot = 0), the mass flux 
is proportional to 02j~~ 2. Except for the particular wall locations 
6--  - 2 / 3  and ~ = 0 (wall located on the boundary lattice nodes), the mass 
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flux is of order O(• 2) when the derivative 02j~l/Oz 2 is O(1), e.g., stagnation 
flow near an #finite solid plane, t25~ A similar calculation for a solid wall 
parallel to the y axis and inclined at 45 ~ with the x axis (still parallel to 
some of the F C H C  velocities) shows a dependence of AM with 82j~~ '2 
which does not vanish for A = 0 and ~ = - 2/3, but for other values of the 
minimum distance between the lattice nodes and the wall. Preliminary 
calculations for more general orientations of the wall have shown a similar 
dependence of the mass flux with the second-order derivatives of the 
momentum. Unfortunately the coefficients depend upon the details of the 
discretization of the boundary and we do not even know if they can vanish 
for some values of the minimum distance between the lattice nodes and the 
wall, as observed for the previous orientations. 

From these results, it appears that the user is faced with two choices: 
to keep the third-order precision of the LSOB method at the possible 
expense of a second-order mass flux across some sides of the boundary,  or 
to prescribe a zero mass flux across each side of the boundary (for instance, 
by a nonlocal distribution of AM between the unknown populations at the 
boundary nodes) at the expense of a second-order precision when 
82j~?J/Sz '2 is O( 1 ). The actual choice will probably depend on the properties 
of the simulated flow. 

3. FLAT SOLID WALL PARALLEL TO THE y AXIS 

3.1. 3D Flow 

In the previous sections we have not made any assumption about  the 
inclination of the solid boundary with the lattice axes. However, in order 
to demonstrate the method in some detail and, in particular, in order to 
determine the subsets of the populations N~ se, one must find all the 
possible local neighborhood of the boundary nodes appearing from the dis- 
cretization of an inclined flat wall on the F C H C  lattice. This rather com- 
plicated problem becomes much simpler if the solid wall is assumed to be 
parallel to one axis, say y, but arbitrarily inclined with the two other ones, 
x and z. This simplified geometry still remains quite general compared to 
the solid walls parallel to a lattice plane that are usually considered. 

Let 0 be the angle of the wall with the x axis; the associated 
orthogonal coordinate system is 

x '  --- x cos 0 + z sin 0 

z' = - x sin 0 + z cos 0 (60) 

y t  ..~. y 

822/84/5-6-4 
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and the [6 • 8] matrix ~- in (42) is given by relations 

Ex:: = cos 0 (COS 2 0 - -  2 sin 2 0) Oz,2 

+ sin 0 (7 cos'- 0 -- 2 sin-" 0) + 

O2jx , 
E_..,.,. =s in  0 (sin 2 0 - - 2  cos-" 0) Oz,2 

+ cos 0 (2 cos-" 0 - 7 sin 2 0) 02j'' 
Ox' Oz' 

, o  j , , , . .  + o9.< ? 
Eyzz = COS-  g ~ n'- s m  20 . Ox' Oz' J 

a'-j .... 
E._;,>, = 2 cos 00y '  Oz' 

"9.  "9. ,, 02jr . ~ O-'j.,., + 0-'~),, "~ 
E ...... = s i n ' - v ~ - - s i n 2 0  

' {Oy'Oz' Ox'Oz'J 

o's; .  
E~,.y = - 2 sin 00y '  Oz' 

3 sin 0 cos 2 0 02jy' 
Oy' Oz' 

3 sin 2 0 cos O'-j>,, 
0 03,' Oz' 

(61) 

Analyzing the relations (27), (37), and (61), one sees that the derivatives 
9 .  t 02j.,.,/Oy ' Oz' and O-j>,,/Ox Oz' come into (43) with equal coefficients e,v and 

e; 8 for walls parallel to the y axis: 

v 
e , v=- -Qix . r  ), e , s=e  n,  i ~ { I  ..... b,,} (62) 

2q, " a 2 - -  

Hence, in order to obtain det[e use] ~0 ,  the second-order approximation 
(43) must be written 

Ni(zo) = d(zo) + d'j s~ Ci + XU(zo) �9 elJ(Zo) (63) 

where the seventh component of X"(zo) is the sum of the last two com- 
ponents of the vector X(zo) 

x,.tZo)=d,(ajx, aj~, agx, ak,., ag~, ag,,, agx, 
\ Oz" Oz" Oz '2' Ox' Oz" 02 '2, Oy' Oz" Oy' Oz' 

0"-j;, ~ sol 
- -  + ~ / ( z 0  ) 

(64) 
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and the seven components of the vector el I are the first seven components 
of the vector e,. defined in (44). Note that for a solid wall parallel to the 
(x, y) lattice plane ( 0 = 0  ~ and located exactly on the last lattice nodes 
(6 = 0), the last component ell of ell becomes equal to zero [cf. (62)]. In 
order to avoid det[e  ~r =0 ,  only the first six components of Xl I and el i 
must be used in (63) for the particular case 0 = 0  ~ 6 = 0 .  

3.2. 2D Flows 

The users of lattice Boltzmann methods often consider 2D flows. 
When the flow is parallel to some lattice plane, say (x, z), it can be 
simulated on the FCHC lattice with periodical boundary conditions in the 
y direction. In such a case, the second-order solution for 2D flows will be 
automatically obtained when the LSOB method is applied in its general 3D 
form. However, since the y component of the momentum and the momen- 
tum derivatives along the y axis are equal to zero for such flows, the 
second-order approximation of the populations can be written in the 
following reduced 2D form: 

Ni(zo) = d(zo) + d'j ~~ Ci + X2D(Zo) "e~D(Zo) 

j=  {j.,.,(x', z'), j:,(x', z')} 
(65) 

where 

:o:.,, o2j.,, o;.  s o , ,  

X2D(z0) = d '  \ Oz" Oz '2' Ox-~z J tz~ ) (66) 

and the three components of the vector e~ ~ are, accordingly, the first, third, 
and fourth components of the vector e; defined in (44). Thus, the LSOB 
method needs only three populations N} 's~ to determine boundary condi- 
tions with third order error for two dimensional flows. 

3.3. Some Part icular  Sets of Known Populat ions 

In order to apply the LSOB method on any boundary node Zo one 
must choose the populations NySe(Zo) [see (47)-(49)] in such a way that 
the corresponding matrix e use is invertible and the value of ~ in (54) is 
nonzero for the inclination 0 of the given solid wall, the distance 6 between 
z o and the wall, and the chosen eigenvalues of the collision matrix. 
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At this point it becomes necessary to label explicitly the 18 different 
velocities of the 3D FCHC model; let us use the following choice: 

C1 =(1, O, 0), C2 =(1, O, 1), C3 = (0, O, 1) 

C 4 = ( - - l , O  , 1), C5 = ( - 1 ,  0,0), C6= (0, 1, 1) 

C7 =(0, -1 ,  1), C8 =(0, 1,0), C9 =(0, - 1 , 0 )  

Clo=( l ,  I, 0), C,I = ( - 1 ,  1,0), C 1 2 = ( - 1 , - 1 , 0 )  

Ci3=(1, --1, 0), C,4 =(0, 0, -1 ) ,  Cls=( - -1 ,  0, --1) 

C i 6 : ( 0  , 1, -1 ) ,  Cz7 =(0, - 1 ,  -1 ) ,  CI8=(1, O, - 1 )  

(7) 

When the solid wall is parallel to the y axis and 0~ ~ five 
kinds of boundary nodes, denoted r~ to r 5 in Figs. 2a and 2b, can appear 
for the natural "stair-type" discretization on the FCHC lattice, defined such 
that the algebraic distance ~ from these nodes to the wall is negative and 

Fig. 2. 

Z ~  [ OUt 

" x  :,, ,o0. 
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d 
I 

o I o o 

I 

(a) 

Two-dimensional section of noninclined and inclined channels parallel to the y axis: 
(a) 0 = 0 ~  (b) tan 0=3/5.  
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1 = , -  ~ m 

X V ' l l  " I 

- -  - -  "1" ' " -  - I  

, .  AW-7 , , 
z . , ,  / I  h' ~' ' 

\ i ~ - " 1  I - - - I - - - ~  - - 4  
\ j , , , , ' o n l  o4 i ~ i i i 

\ ~ ~  " i i q i , I 

�9 . ~ _ ~ -  - L . . ~  ~ - - .  - - -~ - - - , - -  - '  
" , ~ - " / v "  " ' 1  I I t I 

\ ~ l  o t i I I 
X i I I -  I I -  _ _  ~ - -  ~ -  i ~ . " l I - - - -  

\ , - - - ,  , , , T7 
2h'~ I i o i / / o ~  i o ~ 1  

L \ _  _ J_ _ _ 2 x ~ . . ~ - .  \ u  / ; 

_ _ _ ~ _ .  
(b) 

F i g .  2 (Continued) 

there are at most two consecutive boundary nodes in the direction. These 
nodes r, to r5 can be described as follows: 

node rl: L+ = 10, L - = 8 ,  

node r  2 :L  + = 1 1 ,  L - = 7 ,  

noder3:  L+ = 13, L - = 5 ,  

n o d e r 4 : L  + = 1 4 ,  L - = 4 ,  

noders:  L+ = 17, L - = I ,  

I ' ~ 1 6 2  ..... 9,11,12} 

I'~ 

I ' ~  ..... 13} 

I ' ~  ..... 13,15} 

1 ' ~  ..... 17} 

(68) 
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where L + ( L - )  is the number of known (resp. unknown) populations in 
the node Zo (L + + L - =  18 for the 3D projection of the FCHC lattice; 
in this case the populations 1, 3, 5, 8, and 14 must be counted twice). 
Note that for 0 = 0  ~ all the boundary nodes are of the r3 type (see 
Fig. 2a) and the pattern {r2, rs} repeats itself for 0 = 4 5  ~ When 0 is not 
in the range [0 ~ 45~ the description of the other possible boundary 
nodes is derived from (68) through the symmetry group of the FCHC 
lattice. 

Obviously, it is much simpler to have the same subset of the popula- 
tions N~ ~ for any local geometry appearing from the discretization of a 
given wall. For a solid wall parallel to a lattice axis and for the "stair-type" 
discretization, we have verified that such subsets can be extracted from the 
populations ~r~oc i.e., without using the populations N ~ Except for some 
particular combinations of the eigenvalues 2 , ,  22 and the parameter 3, 
these solutions give det[e u~r ~-0 in (49) and ~z  # 0 in (54) when the wall 
is located outside the lattice and the eigenvalues of the collision matrix 
satisfy the linear stability conditions ~2~ i.e., they are taken in the interval 
3 - 2 , 0 [ .  

Simulating 2D flows, one can take the following subset of known 
populations N~ ~ for any local geometry r~ to rs [cf. (66)] 

IU~e= {2,3,4} (69) 

When the flow is 3D, one can take, for instance, in ordinary nodes r 3 for 
a noninclined wall ( 0=  0 ~ or in any node rl-r5 appearing from the dis- 
cretization of the inclined wall the following subsets of the known popula- 

I o c .  tions N; . 

IUS~ = {3, 4, 5, 6, 7, 11, 13}, 

IUS~= {3, 4, 5, 6, 7, 11}, 

I"Sr = {2, 3, 4, 6, 7, 8, 11 }, 

0 = 0  ~ 3 # 0  

0 = 0  ~ 3 = 0  

0~ ~ 

(70) 

It should be mentioned that the subsets I use in (69) and (70) are not the 
only solutions; one can find other subsets of the known populations Nli ~ 
or N ~ or even use linear combinations of these populations. 

However, the generalization of these boundary conditions to more 
complicated walls, such as walls with a more general inclination or smooth 
surfaces, will require characterizing all the possible types of boundary 
nodes and finding a systematic algorithm to choose the populations N~ se at 
these nodes. These tasks remain to be done. 
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3.4. Application of LSOB Method to Poiseuille and 
Couette Flows 

Poiseuille and Couette flows parallel to some principal lattice link 
represent the usual test solutions. For Poiseuille flows parallel to a popula- 
tion velocity, the only problem of lattice Boltzmann simulations with 
classical reflections is the effective location of no-slip walls with respect to 
the computational domain/~5-2~ When the bounceback condition is used, 
it is shown in ref. 16 that the effective width of the channel parallel to some 
lattice link depends upon its inclination and some function of the eigen- 
values 2~ and 22 (see ref. 24 for further discussions about this function). 

3.4.1. Poiseuille Flows in Inclined Channels. Two kinds of 
stationary Poiseuille flows can be considered in a channel with solid walls 
parallel to the y axis ( y ' =  y) and arbitrarily inclined with respect to the x 
axis. In the first case, the flow is parallel to the x' axis [see (60)]; in the 
second case the flow is parallel to the y axis. Both flows depend only on 
the coordinate z' and the forcing term can be described in a uniform 
manner 

0-'j'~, 
- h '  ~ z' <~h', o~' x '  or c~' - P F ~ ' = V O z , 2 ,  = = Y ,  P = P o  (71) 

For such flows, the second-order Chapman-Enskog expansion gives the 
exact solution since higher order derivatives vanish, 

d'Oj~, . , Qi , , + V__ E~2~(r) . T i  Ni(r) = d +  d'j~,(r) c)~, + ~ [r) (72) 

The term EI2~(r) �9 Ti is written in (38)-(41). When the external force (1) is 
applied to simulate constant pressure gradient, the density d is constant 
(see discussion in ref. 24 for more details). Moreover, the second-order 
term EC21(r).T; is invariant by the rotation for Poiseuille flows (see 
Appendix A). 

Figure 3 shows the profiles across the channel of the normalized dif- 
ferences between the numerical and expected solutions for the density and 
the normal and tangential momenta obtained with LSOB and bounceback 
conditions. For all the profiles the normalization factor is h' / j  max, jm '~  

being the theoretical peak momentum in the Poiseuille flow and h' the 
expected half-width of the channel: h' = h cos 0 and tan 0 = 3/5. 

As shown by the zero-value lines in Fig. 3, the LSOB method provides 
an exact analytical solution for any inclination and for any channel width. 
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Fig. 3. Profiles of  the normalized difference between numerical and theoretical solution for 
two Poiseuille flows: (a, d) density p, (b, e) tangential momen tum j.,., and, (c, f) normal  
momen tum j~,. The normalization factor is h'/j max, jmax being the theoretical peak m o m e n t u m  
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tan O = 3/5. The solid lines are obtained for bounceback condition and the dotted zero-value 
ones for the LSOB method. The simulations are performed with the same viscosity and body 
force; all the eigenvalues of the collision matrix are equal to - 1. The results are shown for 
two sizes of the computat ional  domain: h = 5 (a-c) and h = 20 (d-f).  
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This is due to the fact that for such flows the second-order expansion (72) 
represents the exact solution and the total mass is automatically conserved 
by the LSOB method (as shown in Appendix A for the simplified dis- 
cretization given in Fig. 4). The width of the channel is fixed by the choice 
of the computational domain and the distance 3; the inclination is con- 
trolled by the construction of the LSOB conditions at each boundary node 
[cf. (43)-(44)]. All the different implementations of LSOB method 
simulate exactly the Poiseuilie solutions: the density can be assumed either 
known or unknown, and the method can use either the general 3D solution 
(43)-(44) or its 2D form (65), or even the shorter 1D form given in 
Appendix A; the possible subsets of the known populations Ny s~ for the 
upper wall can be taken either in (69) or in (70) (the populations for the 
lower wall being found by symmetry). 
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Fig. 4. "Rough" discretization of a solid wall parallel to the y axis for tan 0---m/n, with 
m = 3  a n d n = 5 .  
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As shown by the solid lines in Fig. 3, the situation is totally different 
for the bounceback condition when the flow is no longer parallel to a sym- 
metry axis of the lattice (0d = x ' ,  0 ~  0 <45~ These results show that the 
bounceback condition leads to unphysical oscillations of the density, which 
should be constant, and the normal component of the momentum, which 
should be zero. Not only do similar oscillations appear on the tangential 
momentum, but also its average value is shifted. When these effects are 
compared for two different widths, one sees that they are located near the 
walls (boundary or Knudsen layer) and that their amplitudes are almost 
constant for the chosen normalization. This result shows that these errors 
scale like 1/h'; then the simulations with the bounceback condition are 
only first-order accurate in the size of the domain. Thus, bounceback con- 
ditions cause the appearance of Knudsen-type nonhydrodynamic solution 
near an inclined wall. The principal reason for that is local mass conserva- 
tion enforced by the bounceback condition. In fact, it can be analytically 
proven that the mass is not locally conserved for the solution (71) when a 
no-slip condition is correctly imposed and the channel is inclined with 
lattice links; a simplified proof  is given in the next section for Couette 
flows. 

3.4.2. Couet te  F low in Inclined Channels. We consider 
stationary Couette flow in an inclined channel in order to demonstrate an 
application of the LSOB method to flows with a nonzero momentum on 
an obstacle. In fact, one of the advantages of the LSOB method in com- 
parison with the classical reflections is that nonzero momentum can be 
introduced into the flow in the same manner as zero momentum. 

Let the flow be parallel to the x axis; as above, the z axis is per- 
pendicular to the solid walls [-see (60)] and h' is the width of the channel. 
The velocity of the lower wall is equal to u 0 and the upper one is immobile. 
Thus, the stationary Couette solution is 

u,-,=uo I - -  , O~z'<~h', P=Po (73) 

The exact solution of the lattice Boltzmann equation (I) for this linear flow 
becomes [see (72)] 

[ ] N,(r )=d+d'  j,,.,(r) C;_,.,+~--~', Q,.,.,~, , p=po (74) 

When a combination of bounceback and specular reflections is applied, a 
first-order analysis gives an exact location of the immobile wall in the 
linear flows, provided that the channel is not inclined (see ref. 14 for FHP,  
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refl 17 for FCHC). In particular, the no-slip condition is satisfied exactly in 
the middle between the last nodes in the fluid and the next solid ones, when 
"pure" bounceback reflection is implemented. However, one observes at the 
boundary nodes near the immobile wall of an inclined channel that the 
velocity perpendicular to it does not vanish when bounceback reflection is 
applied, in a way similar to the Poiseuille flow shown Fig. 3. Hence, the 
exact solution (73) cannot be obtained in inclined channels by the lattice 
Boltzmann method with bounceback condition. Again the problem is 
linked to the local conservation of mass. The difference between the LSOB 
and bounceback methods is easily checked for Couette flows in the x' 
direction and a node rs. For  these nodes there is only one incoming and 
one outgoing population respectively, with velocities C18 and C4 [see 
(67)]. Using (74) and the fact that Oj.,.,/Oz' is constant for Couette flows, 
the mass flux on the nodes r5 is given for the fixed wall by 

out Nin A ' r  t't-' aJx' (75)  
N 4  - -  18 . . . .  4.,:'*, "'~4:' "-[- 2 O(Z0) ) OZ' 

with C4.,-, = sin 0 - cos 0 and C4:, = sin 0 + cos O. Obviously this mass flux is 
in general nonzero for 0 ~ < 0 < 45 ~ and cannot satisfy the bounceback con- 
dition N'l" 8 = N4OUt. 

To simulate exactly Couette flows, one can. apply the LSOB method 
in its general 3D or 2D form with j.~ ~ (Zo) equal to poUo (resp. zero) for the 
boundary nodes near the mobile (resp. immobile) wall. However, since the 
flow is linear, only one derivative a zl is required to compute exactly 
the unknown populations. This is discussed in some more detail in 
Appendix A. 

4. C O N C L U S I O N  

A general approach to boundary conditions in lattice Boltzmann 
models has been described. This approach is based on a second-order 
Chapman-Enskog expansion of the populations. An explicit boundary 
method was then developed in order to introduce arbitrarily inclined, flat 
solid walls with a third-order error. The distance ~ between lattice nodes 
and the modeled solid wall is adjustable, provided that stability conditions 
are satisfied. The resulting solution for the unknown populations at bound- 
ary nodes is expressed in the form of a linear combination of the known 
populations, supplied locally by the lattice Boltzmann equation. From the 
point of view of numerical efficiency and adaptation to parallel calcula- 
tions, the method is not essentially different from standard, implicit bound- 
ary conditions. 
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This technique reduces the effects of the nonhydrodynamic modes near 
solid boundaries caused by local or almost local mass conservation 
inherent to classical reflections. It allows exact simulations of stationary 
flows, with a constant-curvature profile, in arbitrarily inclined channels 
with moving or immobile walls (e.g., Poiseuille and Couette flows between 
two plates). The second-order boundary algorithms developed earlier for 
solid walls parallel with some lattice links represent very particular cases of 
the LSOB method. 

The generalization of this boundary technique to smoothly curved 
walls is currently under study. Some preliminary results have been obtained 
for a generalization of the method to circular solid walls and have shown 
that flows in arbitrarily small elliptic pipes can be simulated exactly these 
results will be reported elsewhere. 

Besides other straightforward extensions of this method, for instance 
to multivelocity lattice Boltzmann models or solid walls arbitrarily inclined 
with respect to the lattice, several difficult problems remain. The first one 
is related to the different techniques to implement the method; although 
they give the same solution for Couette or Poiseuille flows, this will no 
longer be true for general flows with higher order derivatives. The effects of 
the different algorithms on the quality and the stability of the numerical 
scheme require further investigations. Finally, geometries with sharp edges 
are quite common in engineering applications and it would be important 
to extend the present approach to such boundaries. For this last problem, 
two difficulties remain. The first one is to find an appropriate method to 
match the constraints on the two walls. The second difficulty is to specify 
the effective accuracy order when some derivatives of the velocity field are 
not defined on the sharp edges. Despite these difficulties, preliminary 
simulations of flows in square pipes have shown that the LSOB method is 
more accurate than the bounceback rule. 

A P P E N D I X  A. POISEUILLE A N D  COUETTE F L O W S  

A.1. Other  Form of LSOB M e t h o d  

In this appendix, we first describe an alternative way to construct 
second-order boundary conditions in lattice Boltzmann models. In this 
case, the Dirichlet condition is approximated as 

�9 ~ Oj~,  1 ~ ,  0 2 j ~ , ,  , oL' z ' }  J~e(z~176 +~ (z~ ~176 ={x', y', (A.1) 

The next step relates the derivatives in (A.1) to the coefficients (31) and 
(39) of the Chapman-Enskog expansion. Using (22), one can easily show, 
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at least for flows near a flat wall, that the derivatives in (A.1) can be 
represented as linear combinations of the coefficients (31) and (39). This 
becomes especially simple for Poiseuille flows, for which (72) can be 
written 

where 

N,(r) = d(r) + d'j~,(r) C,~, + E~,:,(r) Q,,,:, + E~,__,__,(r) T,~,,._,__, 

~ ' = x '  or c ( '=y  (A.2) 

d' aL,, 
E~,.,(r) 2q, Oz' (r) (A.3) 

- ) .  

v 07~, 
E,, . . . . .  d' - -  - -  (A.4) 

- -  2z 8z  '2 

The vector T~,:,__, is obtained by rotation of T~:: as done previously for the 
vectors Q~,/j,, and Q~p in Section 2: 

D + 2  
T i c e : , : , = C i ~ , -  c2 Cia, C~z, (A.5) 

Then, substituting the Taylor approximation (A.1) in (A.2), we have 

with 

and 

Ni(zo) , .sol = d +  d j ~ ,  Ci~, + X(zo) �9 ei(zo) 

X(zo)={G,:,,G,:,:,}(Zo) 

ei(Zo)={ei~,:,, e/s,:,:,} 

(A.6) 

(A.7) 

(A.8) 

el=,_-, = Qi~,:, + p i Ci~, 
(A.9) 

ei~,z, z, = Ti~,z, z, --  p2Ci~, 

The local parameters PL and P2 are related to the distance ~ between Zo and 
the wall by 

p~ =2q,~ 

(A.10) 
22 32 

P2 = G  
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Note that if 

e/=O (A.11) 
i E:/in( 7,0 ) 

for instance when e ' =  x(O=O ~ or 0(= y, then we have [cf. (51)] 

Po=0 (A.12) 
i e  linIz0) 

and 

~, P , j=0  (A.13) 
j e  tuse(zo) i e  lin(zo) 

Hence, when the condition (A.11) is satisfied, the matrix P~S~ coincides 
with the matrix P [cf. (57)]. In addition, when (A.11) is true and js~ 
or Zk~t~,~z01 C,  =0,  the local density in (54) becomes equal to the mean 
density of the known populations Nt,. ~ 

Thus, in the 1D case (A.6)-(A.9), X can be computed at each bound- 
ary node from only two known populations such that the corresponding 
det[e use] is nonzero. If the known populations Nt~ ~ and N I~ (see Fig. 2a) 
are chosen for N~ ~ and N~ s~, the [ 2 x 2 ]  matrix e u~ becomes [cf. 
(A.8)-(A.9) 

e .... = ( Q t ~ , , _ , + p , C , , , ,  T,~,, . . . . .  p,C,~,, '~ /c . ,  ; IA.14) 

In Appendix B a linear stability analysis shows that the lattice Boltzmann 
equation with the LSOB condition is expected to be stable when the solid 
wall is located outside the lattice (6 ~< 0). With this condition, the sign of 
the parameters p~ and p_, is also determined because the eigenvalues of the 
collision matrix should be in the interval ] - 2 ,  0[ to satisfy the linear 
stability conditions3 2~ Consequently, the study of det[e use] can be limited 
to the following intervals: 

pl~>0, p2~<0 (A.15) 

Note also that the populations for a Couette flow are also given by 
(A.6) with Er Hence, in order to simulate exactly this flow, it is 
enough to derive the value of tbe coefficient E,.,_., from some known popula- 
tion NI,. ~ or N ~ provided e,..,.,:, :/: 0. 

A.1.1. Example: Poiseuille F low in a Nonincl ined Channel.  
Our goal is to enforce no-slip walls at a chosen distance, equal to - 6 ,  from 
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the last upper and lower boundary nodes. In this case, all the boundary 
nodes are of the same type, labeled r 3 in (68) (see also Fig. 2a). In order 
to obtain de t [e  u~] ~-0 in (A.14), Nt~ ~ and N~ ~ must be chosen such that 

C1:4:C2:, Cl~,:#0, C2~,4:0 with ~ ' = x  or c t ' = y  (A.16) 

For instance, for the boundary nodes Zo near the upper wall, one can take 

C l :  = 1, Cl~ x, = 1 

C2: = 0, C2~, = 1 

with the corresponding matrix e ~ in (A.14) given by 

(A.17) 

eU~C= , de t [e  u~] = 1 + 3 p ~ - P 2  (A.18) 
P] 

Thus, det [ e u~] is nonzero for any parameters p~, P2 which satisfy the con- 
ditions (A.15). For Poiseuille flows, the vector e~ is proportional to C~, [cf. 
(A.8)-(A.9)]. Consequently, the conditions (A.11)-(A.13) are satisfied in 
noninclined channel due to symmetry and the local density d is equal to the 
mean value of the known local populations N~; ~ [see (54)]. Note also that 
the mass is locally conserved in noninclined channels since the sum of 
populations N ~ is equal to the sum of unknown populations Ni~ ~ due to 
symmetry. Thus, only the matrix P of (51) must be found in order to 
impose no-slip walls in a noninclined Poiseuille flow. For  instance, when 
the no-slip walls are implemented exactly on the last lattice nodes (6 = 0), 
both parameters Pt and P2 are equal to zero [cf. (A.10)]. Consequently, the 
solution (51) with (A.8), (A.9), and (A.18) gives 

N~ -d,  Cl~,=0 

N i p = 6 d - { U ' ~  C p = = -  1, CB~, = 1 (A.19) 

in - - 4 d  + { Ul~'c + 4U~~ C r_ - 1 ,  C~,~, = 1 N 7  - -  " "~" - -  

Note that the solution (A.19) is not the only one. One could use any 
other pair of known populations N~f ~ or any pair of populations N ~ 
which satisfy the conditions (A.16). One can also determine N~ sr as a more 
general linear combination of the populations N~ ~ and (or) N ~ For  this 
particular flow, one can also represent the unknown populations as a linear 
combination of Nl~ and Nl_~ (or) N ~  I and N ~  t which do not satisfy the 
conditions (A.16) since C _ I : , = C  2=, (see Fig. 2a). In such a case, 
det[e  ~ ]  given in (A.18) is equal to zero and hence one cannot derive 

822/84/5-6-5 
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both first- and second-order derivatives (A.7) from these populations. 
Nevertheless, using the relation between these derivatives for the Poiseuille 
equation (71), one can find a solution in the form of a linear combination 

N , are used, one of such populations. In particular, when N~ I and out 
obtains the solution for the proportion p in combination of bounceback 
and specular reflections 

N _ _ 9  
N~n _ ou t  _ ou t  - p N _ l  +(1  p) _ 

+ - N  ~  Ni~".=(1-p)N~ 1-'-2 
(A.20) 

This kind of solution for noninclined channels and for channels inclined at 
45 ~ with FCHC lattice links has been already discussed in ref. 17. It is 
worth mentioning however, that the solution for p depends not only on the 
distance g, but also on the width of the computational domain while the 
matrix P does not depend upon it. 

A.2. Conservation of Total Mass by LSOB Method for Couette 
and Poiseuille Flows 

As predicted from general arguments in Section 2.6, our numerical 
simulations confirm that the LSOB method conserves the total mass 
automatically in stationary Couette and Poiseuille flows. Indeed this result 
should hold analytically and we are going to show this below when tan 0 
is a rational number m/n, with 17 and m relatively prime and 2 ~< m < n, and 
for the simplified discretization of the solid wall illustrated in Fig. 4. This 
discretization is rougher than the "stair-type" one shown in Fig. 2b; 
however, it is easier to manipulate analytically since the distribution of 
boundary nodes is given for 2 ~< m < n by the periodic replication of the 
following pattern: 

i m -- 2)  t imes  (11 -- 21 t imes  

.I 1._C ( 1 4 ,  3 . . . . .  1"3 -L , r o ,  r 3  . . . . .  1"3 , 1"4, 1"51 (A.21) 

where the pseudo-2D-corner ro is described using the notations (68) by 

node r0: L § =9 ,  L - = 9 ,  I~~ {3 ..... 9, 11, 12} (A.22) 

and r• (resp. r~-) is derived from r 3 (resp. r4) through the symmetry with 
respect to the plane x + z = 0. 
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The mass flux through a given wall is zero if the sum of unknown pop- 
ulations entering the lattice along this wall is equal to the sum of popula- 
tions leaving the lattice through if: 

E E Ni,n(Zo)=E ~'. N~ (A.23) 
z0 iel in(z,0)  z0 iEl~ 

With the help of the Boltzmann equation (1), the populations N~ can 
be easily derived from the populations N~(zo) in (A.2) as 

N~ i ~ I  ~ (A.24) 

where E•,:,:,, and F are identically zero for Couette flows. 
When (A.2) and (A.24) are substituted into (A.23), the conservation of 

the total mass in Couette flow implies that the following must be satisfied: 

~ Ci~, = 0 (A.25) 
/4) i E lin(z0 } 

~, ~ [-Ci~,,Ci:,+20(zo) Ci~,,]-O (A.26) 
7-0 i E lin(z0) 

for ~ ' = x '  and ~ ' = y .  Note that, when (A.25) is satisfied, (A.26) is left 
unchanged by the addition of an arbitrary distance to 6(Zo). 

One can easily verify for "rough" discretization that the relation (A.25) 
is satisfied for any angle 0. In order to verify (A.26), let us calculate 0(z0) 
for each boundary node z 0 obtained from the "rough" discretization. Let 
(k=  1, j =  1) correspond to the boundary node ro (see Fig. 4). Then for 
horizontal boundary nodes k(k = 1 ..... 17) and for vertical boundary nodes 
j ( j  = 2 ..... m + 1 ), 6(Zo) is given by 

6(k, 1)=6(1, 1 ) - ( k -  1) sin 0, 

6(1, j )=6(1 ,  1 ) - ( j -  1) cos 0, 

k~{1 ..... m} 

j e { 2  ..... m + l }  

Then, using (A.25), the relation (A.26) becomes 

(A.27) 

Y, E C~,,,+2sinO ~ ( k - l )  E 
z~ i e l i n ( z g )  k=2 i6lin(k, 1) 

m +  1 

+ 2 c o s 0  Z ( j - - l )  E C,~,--0 
j ~ 2  iElin(1,j) 

Ci~, 

One can verify that the relation (A.28) is satisfied for any angle 0. 

(A.28) 
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In addition to the relations (A.25)-(A.26) derived for Couette flow, the 
conservation of total mass (A.23) imposes two additional constraints for 
Poiseuille flows: 

~ T;=,.,~, = 0 (A.29) 
z0 i E l in(z0) 

and 

Z E 1" - - ~ ( Z o )  Ciot, Ciz,-Jf-~2(Zo) Cio~, ] ~-0 ( A . 3 0 )  
7.0 i ~ / i n (z0 )  

where (A.30) have been obtained with the help of (22) and Oj'=/Oz' constant 
on the wall. Note also that (A.30) is left unchanged by the addition of an 
arbitrary distance to d(Zo) when (A.25) and (A.26) are satisfied. 

In "rough" discretization, one can easily verify that the relation (A.29) 
is satisfied for any angle 0. With the help of (A.25) and (A.26), the substitu- 
tion of the relation (A.27) in (A.30) yields 

n n l  + } 

sinO Z (k-l)  Z C,:eC,._,+cosO Z (j--l) Z 
k = 2 i e  l in(z0)  j =  2 iE  l in(zo)  

2 m+ l 
+sin-'0 ~ ( k - l )  2 ~ Ci~,+cos'-0 ~ ( j - l ) 2  

k = 2  iE  l in(z0)  j = 2  

Ci~, - 0 
i E fin(z0) 

(A.31) 

As above, this relation can be easily verified for "rough" discretization. 
It is easy to check that these relations hold for (re, n)=(1 ,  1) and 

m = 1 and n/> 2. We conjecture that they hold for any discretization of a 
plane with a rational inclination, although the full proof seems quite 
technical. 

A P P E N D I X  B. S IMPL IF IED LINEAR STABIL ITY A N A L Y S I S  OF 
THE LSOB M E T H O D  

Neglecting the nonlinear terms in the equilibrium distribution, a linear 
stability analysis of the lattice Boltzmann methods has been performed for 
uniform flows. (-''26} Von Neumann linearized stability analysis is given in 
ref. 27. Nevertheless, the influence of boundary conditions on the stability 
conditions is not considered in these works. However, this question should 
be raised even for standard bounceback and specular reflections. 

In this section, we first write the evolution equation for the lattice 
Boltzmann equation with linear boundary conditions in which the 
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unknown populations Ni,."(Zo) are expressed as linear combinations of the 
populations Nl,.~ and N,?Ut(Zo), Then we study the zero-wavenumber 
stability of this scheme, assuming a stationary flow parallel to the x axis of 
a FHP lattice and invariant by translation along the solid wall. The FHP 
model is chosen in order to decrease the dimension of the resulting evolu- 
tion matrix. We neglect nonlinear terms in the equilibrium solution (6) as 
always in this paper. 

Thus, the evolution equation (1) with the considered boundary condi- 
tions can be written 

N(r, t + 1 ) = ~ ( r ) .  5 : .  N*(r ,  t) (B.1) 

where the 2b,, elements of N*(r, t) are the population at the node r and the 
neighboring ones 

N * ( r , t ) = { N ( r , t ) , ( N ~ ( r - C ~ , t ) ,  ~{1 ..... b,,})} (B.2) 

.~ is the diagonal matrix consisting of two equal blocks, each block being 
the sum of the identity matrix J and the collision matrix d 

5 : = (  j + d  ._r + j )  (B.3) 

and the [b,,, x 2b,,,] matrix r includes the boundary conditions in the 
evolution equation 

~j(r)=~'@k, k = j - b m ,  if i~I'~ jE{1 ..... 2b,,} (B.4) 
(P,j(r) if iEIi"(r), j ~  { 1 ..... 2b,,} 

where P(r) is any matrix of local boundary conditions at the node r, 
similar to the one given by (57). 

When zero-wavenumber perturbations are considered the stability 
conditions are given by the eigenvalues of the evolution matrix ~( r ) .  ~ .  
Let us give here such an analysis for a system of minimal size. Assuming 
the flow invariant by translation along the x-axis of the FHP lattice and 
periodic boundary conditions along this axis, it is enough to consider only 
one node in fhis direction. In the perpendicular y direction, the system is 
limited by two solid walls parallel to the x axis and consists of only two 
lattice nodes y~ and Y2 (see Fig. 5). 

The six populations N,.(r, t) corresponding to the FHP velocities are 
nubered the usual way, 

C , = { c o s [ ( i - 1 ) r r / 3 ] , s i n [ ( i - 1 ) n / 3 ] } ,  i~{1 ..... b,,,}, bin=6 (B.5) 
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OUt ~ ) t l l  

3 / t ' ' 2  

Fig. 5. Simplified geometry for linear stability analysis on the FHP lattice. 

Hence, the entire system is descr ibed by the 12 popu la t i ons  Ni(Yl, l) and 
N i ( y  2, t) with two u n k n o w n  and four known  popu la t i ons  on each node  
(see Fig.5). The evolu t ion  of  the whole system is descr ibed by 

N*( t  + 1) = ~ .  Yr N*( t ) ,  N*(t)={N(yl,t),N(y2, t)} (B.6) 

where N*( t )  denotes  the conca tena t ion  of  N * ( y ) ,  t) and  N*(y2, t), and 
is the [2b,,x2b,,,] matr ix  ob ta ined  from ~() ,~) ,  ~(Y2) ,  and  per iodic  
b o u n d a r y  condi t ions .  In o rde r  to conserve the mass  a long  each wall and  
due to symmetry ,  it can 

~ =  

1 0 0 

0 0 0 

0 0 0 0 

0 0 0 1 

)t'l p 1 - -p  --w o 

- w l  l - - p  p w I 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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0 0 0 0 0 0 0 
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o 0 

o 0 
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0 0 
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o 0 
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where the parameters w~, w2, p are derived from the matrices of boundary 
conditions P(Yl) and P(Y2) in (B.4). For instance, p - l ,  w l = 0 ,  w2=0 
corresponds to the bounceback condition, and w = 0, w_, = 0 to a Combina- 
tion of bounceback and specular reflections with the proportions p and 
1 - p .  

Since the matrices ~ and 5'9 are real, sufficient stability conditions for 
Eq. (B.6) are obtained when all the eigenvalues of the matrices ~ ' .  ~ and 
~ ~ ~ have a modulus less than unity. For the matrix 5 p. such conditions 
are fulfilled when the eigenvalues of the collision matrix J are in the inter- 
val ] - 2 ,  0[ 

- 2  <2q,<0,  - 2 < 2 2 < 0  (B.8) 

as predicted by the linear analysis (2) of lattice Boltzmann models. The 
analysis of the matrix ~ ' .~  shows that sufficient stability conditions are 

0~<p~< 1, w I - 0 ,  w2 - 0  (B.9) 

i.e., a combination of bounceback and specular reflections with the propor- 
tion p between zero and one. 

However, one can try to extend the interval of stability by analyzing 
the whole evolution operator .~. 5 e. The scheme would be stable provided 
that the eigenvalues of the matrix ( ~ .  5") ' ( ~ .  5,') have a modulus less 
than unity. One can show that in the general case (B.7) it is enough to 
study the eigenvalues of the matrix ~ .  5 a to derive the stability conditions. 
For this purpose, we represent the matrix ~ . 5  p in the physical basis 
{s, ..... s~2}, expressed in terms of the eigenvectors {nl ..... n6} of the colli- 
sion operator .~r as 

s ,=  {hi, n;}, s ;+6= {hi, - h i } ,  ie  { 1,..., 6} (B.10) 

where the eigenvectors of FHP collision operator d can be given as 114" 231 

nl = {I, I, I, I, I, I}, n2 = C.,., n3=Cy 

n4 = Q.,..,. = - Q:,y, n5 = Q.,:,,, n6 = T_,:,:,, 

(B.11) 

In the physical basis (B.10)-(B.11), the matrix 5 e is diagonal, with diagonal 
elements 

{1, 1, 1, 1 +2~,, 1 +2~,, 1 +22,  1, 1, 1, 1 + 2 , ,  1 +2q,, 1 +22} 

Expressing ~ in the physical basis, we can abtain the characteristic polyno- 
mial X(2) of the ~ . S e  as a function of the parameters p, wl, w2, 2~,, 2_,. 
When the sum of populations leaving the lattice is distributed equally 
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between the two unknown populations, the parameter p is equal to I/2. 
For  the sake of simplicity, the subsequent analysis is done for the so-called 
single-time relaxation ~28' 29~ or BGK method ~176 only: 

2g, = 2 z = r  (B.12) 

Under these conditions, the characteristic polynomial has the following 
form 

Z(2)=22(l+r-2)(22-1)Zt(2 ,  r)Z2(2, r, wt,w2)zs(2, r, wl,w2) (B.13) 

where the polynomials Y,, X2 and 2"3 are given by 

2",(2, r) -- 3( 1 + r)( 1 - 2) + (3 + 2r) 2-" - 323 

2"2(2, r, wl, w2)=2"2~-t-2"222 +2"23 22 

2"zl = - �89 + r z) - wl(6 + 7r + r-') - 2w,_(r + r 2) 

2"2_, = - 3 - �89 + w,(6 + 5r) - 2w2r 

2"23=3 (B.14) 

2"3(2, T, H ' I ,  W2)~- 'Z3I  "[-2"32 2 "~2"33/[2 

2"31 = --2"2, 

2"32 = --3( 1 + �89 -- w1(6 + 5r) -- 2w2r 

2"33 = 3 

Under the conditions (B.8), the roots of the equation 2",(2, r) = 0 have 
a modulus less than or equal to one. The roots of 2",_(2, r, w,, w2)= 0 and 
Z3(2, r, w,, w2)= 0 are functions of the parameters w, and w z given by the 
LSOB method. 

For  flows parallel to a noninclined solid wall and invariant along it, 
the second-order populations is given by (A.6)-(A.9). For  these flows the 
mass is locally conserved and the local density is automatically determined 
when the sum of the populations leaving the lattice is equally distributed 
between the two unknown populations at the boundary node (p = 1/2). 

Following the solution (A.6)-(A.9), two populations, N~Se(y) and 
N~Se(y) should be chosen in each boundary node in order to determine the 
solution for unknown populations. In order to obtain the matrix ~ in the 
symmetric form (B.7), one can take at the node y , ,  for example (see Fig. 5) 

N?Sr ~{ N ' ~ -  N~4 ~ 
(B.15) 

use N,  (y , )  ! ~ ' ~ 1 7 6  2 I.~" 2 3 ,I 
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Node Y2 can be considered by analogy. Then the matrix ouse(yl), written 
in (A.14) for any inclined channel, takes the form 

(Qt.,.~+piCl~ TI~.,,,,-P, CI~-] 
eu~(Yl)=\ Qz.,:y + P l C2~. T211:::.,, - p; C211./ (B.16) 

where the indices 1 and 2 for C;x, Q;.,.,,, and Ti.,.yy correspond respectively 
to the populations N~ '~r and N~ ~ in (B.15). Only a [ 2 x 2 ]  matrix P(y~) 
has to be determined in order to c o n s t r u c t  Nin( - 5  Y~)" and N~6n(Yl). The coef- 
ficients of this matrix determine the coefficients w~ and wz in (B.7), 

w, = e5 �9 [ o U S e ( y l  ) ]  1 I 

w2=%" [eU~r 
(B.17) 

where [eUS~]f 1 denotes the j th ,  column of the matrix [e use] -1. The rela- 
tions (B.16) and (B.17) give the following values for the coefficients wt 
and w,_: 

wl = -~cj3 (2 + p,_) 

1 
w 2 -- --~---~ {x//3 (1 -- p2)--6pl} 

(B.18) 

where @ denotes det[e  TM] 

@= - �88 (1 - p 2 )  +6p1} (B.19) 

Note the dependence of the coefficients w~ and w2 upon the eigenvalues 2q,, 
and 2_, and the distance 6 hidden in the parameters Pl and P2 [see (A.10)]. 

When the eigenvalues 2,  and 22 are equal and the solution (B.18) is 
substituted into Z2(2, r, w l, 1'1'2) and Z s(2, r, 1.1,1, w z), the roots of these poly- 
nomials are functions of the eigenvalue r and the algebraic distance 6. The 
analytical solution of this problem is the following: when r satisfies (B.8) 
and the solid wall is located exactly on the last lattice nodes (6 = 0) or out- 
side of the laftice (6 < 0), the roots of Z,(z, 6) and Z3(r, 6) are found in the 
interval of the asymptotic stability [ - 1 ,  1]. This result seems rather 
natural, since a combination of bounceback and specular reflections locates 
the no-slip wall outside of the last boundary nodes, at least for 0 < p <~ 1. 

Note also that considering the full evolution matrix ~ - 5  p for a com- 
bination of bounceback and specular reflections, the interval of stability for 
p can be extended as a function of the eigenvalues 2~, and 22. More 



970 Ginzbourg and d'Humi~res 

precisely, one can show that negative values of p are not stable in agree- 
ment with physical intuition, whereas the upper limit p = 1, given by suf- 
ficient stability conditions, can be extended. Let us also mention that by 
assuming a flow invariant along the wall, one can perform a similar 
stability analysis for the FCHC lattice. 
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